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Finite size scaling of the Bayesian perceptron

Arnaud Buhot, Juan-Manuel Torres Moreno, and Mirta B. Gordon*
Département de Recherche Fondamentale sur la Matie`re Condense´e, CEA/Grenoble, 17 rue des Martyrs,

38054 Grenoble Cedex 9, France
~Received 12 February 1997!

We study numerically the properties of the Bayesian perceptron through a gradient descent on the optimal
cost function. The theoretical distribution of stabilities is deduced. It predicts that the optimal generalizer lies
close to the boundary of the space of~error-free! solutions. The numerical simulations are in good agreement
with the theoretical distribution. The extrapolation of the generalization error to infinite input space size agrees
with the theoretical results. Finite size corrections are negative and exhibit two different scaling regimes,
depending on the training set size. The variance of the generalization error vanishes forN→` confirming the
property of self-averaging.@S1063-651X~97!15406-X#

PACS number~s!: 87.10.1e, 02.50.2r, 05.20.2y
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I. INTRODUCTION

A neural network is able to infer an unknown rule fro
examples. We address specifically classification tasks
which a single neuron, aperceptron, connected toN input
units through weightsw5(w1 , . . . ,wN) attributes labels
61 given by s5sgn(w•j) to input patterns
j5(j1 , . . . ,jN). A perceptron is able to correctly classif
linearly separable~LS! problems; the hyperplane orthogon
to w separates, in the input space, the patterns given pos
outputs from those given negative outputs. Given a setLa of
P5aN examples, i.e., training patternsjm (m51, . . . ,P)
with their corresponding classtm, the process of finding the
weightsw is calledlearning. Generally, if the problem is LS
there is a finite volume of error-free solutions in weigh
space. This volume is calledversion space.

Most of the learning algorithms proposed so far may
stated as the minimization of a cost function or empirical r
E(w;La) in the weights space. The structure of the probl
of learning from examples allows for a statistical mechan
analysis, in which the cost function is considered as an
ergy. The performance of the learning algorithm is calcula
through thermal averages with Boltzman distribution
weights space and quenched averages over all the pos
training sets. In the thermodynamic limitN→`, P→` with
a5P/N constant, the zero temperature limit of these av
ages accounts for thetypical behavior of the algorithm. The
fraction of training errorse t , the generalization erroreg , and
the distribution of distances of the training patterns to
separating hyperplaner(g) can be determined with the as
sumption of self-averaging.

The minimization of the number of training errors, calle
the Gibbs algorithm, is not the best learning strategy in
case of LS problems, because it picks up one point in vers
space at random. Its typical generalization error@see~6! be-
low for the definition# vanishes with the size of the trainin
set likeeg'0.625/a @1#. A more elaborate strategy is to loo
for those weights in version space that maximize the dista
of the separating hyperplane to its closest training patte
@2,3#. These patterns are called the support vectors@4#, and
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define themaximal stability~or maximum margin! percep-
tron ~MSP!, that lies at the center of the version space, a
whose generalization error vanishes in the largea regime
like eg'0.5005/a @5,6#. As the training set only contains
small fraction of the information needed to find the under
ing rule generating the examples, there is a lower bound
eg , given by Bayes decision theory@7#. Bayesian perfor-
mance may be implemented by what is called a commi
machine@8#: through the vote of a large number of perce
trons trained with Gibbs algorithm. The Bayesian gener
zation error vanishes likeeg'0.442/a, in the limit of large
a. However, the convergence of the committee machine
the optimum is guaranteed only in the limit of an infini
number of preceptrons. In order to circumvent the compl
ity of the committee machine, several learning algorithms
single perceptrons, based on the minimization ofad hoccost
functions, have been recently proposed@5,6,9#. In these ap-
proaches, the cost function is sought within a given class
functions and has a free parameter which has to be optim
for each value ofa, the fraction of training patterns. Th
generalization performance of these algorithms is veryclose
to the Bayesian optimal value. Some of them end up wit
finite fraction of training errors, suggesting that the optim
solution might lie outside the version space, but it has b
established that this is not the case@10#. More recently, the
cost function that minimizes the generalization error, w
determined through a variational approach, and it w
showed that its minimum endows the perceptron with
optimal, Bayesian, generalization performance@11#.

In this paper, after a somewhat different derivation of t
optimal cost function, we determine the typical distributio
of distances of the training patterns to the Bayesian hyp
plane, and we present simulation results that confirm the
oretical predictions. We find that the optimal Bayesian s
dent lies close to theboundaryof the version space. The
finite size corrections to the generalization error are nega
and present two different scaling behaviors as a function
a.

II. THEORETICAL RESULTS

In this section, we present an alternative derivation of
optimal potential for learning linearly separable tasks
7434 © 1997 The American Physical Society
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55 7435FINITE SIZE SCALING OF THE BAYESIAN PERCEPTRON
completeness and we deduce the training patterns dist
distribution. The theoretical problem is formulated as f
lows: the probability that the classifier assigns classs to
patternj after training with a setLa of aN examples is
P(su$j,w,La%)5Q(sw•j)P(wuLa)P(j), where Q(x) is
the Heaviside function. In general theposterior probability
P(wuLa) is determined through the minimization of a co
functionE(w;La) which depends on the training set. In o
der to derive the properties of a training algorithm minim
ing a cost function, it is useful to introduce a fictitious tem
perature 1/b, and consider the finite temperature probabil

P~wuLa ;b!5p~w!
e2bE~w;La!

Z~La ;b!
, ~1!

wherep(w), called theprior probability density, allows to
impose constraints to the weights, andZ(La ;b) is the parti-
tion function

Z~La ;b!5E exp@2bE~w;La!#p~w!dw. ~2!

The typical behavior of any intensive quantityX(w) is ob-
tained under the assumption of self-averaging through
quenched average overall the possible training setsLa of the
same sizea, in the thermodynamic limitN→` ~taken at
constanta5P/N) and in the zero temperature limit:

^^X&&5 lim
N→`

E P~La!dLaF lim
b→`

E X~w!P~wuLa ;b!dwG .
~3!

where ^^ . . . && stands for the double average, over t
weightsw and the training setsLa .

If the cost function has a unique minimumw* (La) ~this
may not be the case, as happens when the cost function i
number of training errors!, thenP(wuLa)5d„w2w* (La)….
In this case, the average between brackets in~3! is reduced to
X(La ,N), which is a random variable that depends on
particular training set realization throughw* (La). The width
of its probability distribution function is expected to vanis
in the thermodynamic limit, i.e., all the training sets endo
the perceptron with the same properties, with probabi
one. This property is called self-averaging. As a con
quence,X(La ,N) may be calculated by averaging over a
the possible training sets to get rid of the particular train
set realization. The replica method of statistical mechan
has been developped to cope with the averages over
called quenched variables which in this case correspon
the realizationsLa .

Consider the paradigm of learning a LS rule from e
amples: for each patternjm, a teacherperceptron of weight
vectorv defines the corresponding targettm5sgn(v•jm). As
usual, we assume that theP5aN training patterns are inde
pendently selected with a probability density functi
P(jm), and that the cost function thestudent’sweightsw
have to minimize is an additive function of the examples

E~w;La!5 (
m51

P

V~gm!, ~4!
ce
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where the potentialV depends on the training patternm and
its class through the stability

gm5tm
w•jm

Aw•w
. ~5!

As the outputssm and tm are invariant under the transfor
mationsw,v→aw,a8v with a,a8.0, the teacher’s and stu
dent’s weights spaces may be restricted to the hypersph
w25N andv25N respectively without any loss of genera
ity. Most training algorithms can be cast in the form~4!. If
the minimum of~4! is unique andV(g) is differentiable, the
weightsw can be obtained by a gradient descent. This is
the case for Gibbs algorithm, whose potential is the non
ferentiable error-counting functionVG(g)5Q(2g).

The generalization erroreg(w) is the probability that a
pattern, chosen at random with the same probability den
as the training patterns, be misclassified by the student
ceptron. Its typical value depends on the overl
R5^^v•w/N&& between the student and the teacher wei
vectorsw andv,

eg[^^eg~w!&&5
1

p
arccosR. ~6!

We assume that the training patterns are identically d
tributed random variables whose components have z
mean^j i

m&50 and unit variancêj i
mj j

n&5dmnd i j . The free
energy per neuron is averaged over the training sets with
replica method under the assumption ofreplica symmetry,
which will be shown to be stable. The extremum conditio
on the free energy that determine the overlapR are @5#

12R252aE
2`

`

HS 2Rt

A12R2D „l~ t;c!2t…2Dt, ~7a!

R52aE
2`

`

expS 2
t2

2~12R2! D „l~ t;c!2t…dt

2pA12R2
; ~7b!

with Du5exp(2u2/2)du/A2p and H(t)5* t
`Du

5(1/2)erfc(t/A2). The parameterc is the b→` limit of
b(12q), whereq is the overlap between two solutions
the student’s space. If the cost function~4! has a single glo-
bal minimum,q→1 and c is finite. The functionl(t;c),
determined by the saddle point equation of the free ene
for b→`, minimizesW(l)5V(l)1(l2t)2/2c with re-
spect tol. For cost functions having continous derivativ
l(t;c) satisfies

t5l1c
dV

dl
~l!. ~8!

The solution to~7! has to verify the necessary condition fo
local stability of the replica symmetric solution@6#:

2aE
2`

1`

DtHS 2Rt

A12R2D „l8~ t;c!21…2,1, ~9!

wherel85]l/]t. It has recently been shown that~9! can
only be satisfied if~8! is invertible, which imposes@12#:
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cV9[c
d2V

dl2.21. ~10!

If V(l) is known,eg can be calculated through the sol
tion of Eqs.~7a! and~7b!. Instead of solving this direct prob
lem, we are interested in finding thebestpotential within the
class of functions having continuous derivatives. Instead
using Schwartz inequality as in@11#, we show that a straight
forward functional maximization ofR leads to the same re
sult. As only the productbV appears in the partition functio
~2!, we can multiply the potentialV and the temperature
1/b by the same constanta.0 leavingZ(La ;b) invariant.
This transformation changesc→c/a in ~8! and~10!, leaving
R unchanged. Thus, we may imposec51 throughout with-
out any loss of generality, which amounts to choosing
energy units.

A further simplification arises from consideringR as a
functional of V through g(t)[l(t)2t. For then we can
write

g~ t !52
dV

dl
„l~ t !…, ~11!

wherel(t) is the solution to~8!. Equations~7! and ~9! be-
come respectively

12R252aE
2`

`

g2~ t !HS 2Rt

A12R2DDt[a f ~R,g!,

~12a!

R5
a

pE2`

`

g~ t !expS 2
t2

2~12R2! D dt

A12R2
[ah~R,g!,

~12b!

2aE
2`

`

„g8~ t !…2HS 2
Rt

A12R2DDt,1. ~13!

Givena, Eqs.~12a!, ~12b!, and~13! must be simultaneously
verified by the functiong(t) that maximizesR. We look for
solutiong(t) that maximizes~12b!, with ~12a! considered as
a constraint, introduced through a Lagrange multiplierh. As
it is not easy to impose inequality~13! as supplementary
constraint, we maximize R5ah(R,g)1h@12R2

2a f (R,g)] and we will show that our result is consisten
i.e., that theg(t) obtained does indeed verify conditions~10!
and ~13!. The function g(t) that maximizesR satisfies
dR/dg(t)50, which implies dh/dg5hd f /dg, where
d(•••)/dg stands for the functional derivative of (•••) with
respect tog(t). It is straightforward to deduce the expressi
for g:

g~ t !5
h21

2A2p~12R2!

expS 2
R2t2

2~12R2! D
HS 2

Rt

A12R2D , ~14!

whereh andR depend implicitly ona. After introduction of
~14! into ~12!, we find the solutionsR(a)[R andh(a):
f

e

R2

A12R2
5

a

pE2`

`

Dt

expS 2
t2R2

2 D
H~2Rt ! , ~15a!

h21~a!52
12R2

R . ~15b!

They determine, through~14!, the functiong for each value
of a:

g~ t;a!5T2
d

dt
lnHS 2

t

TD , ~16!

where we wroteg(t;a) to stress thea dependence, and
T2[(12R2)/R2. It is straightforward to verify that
g(t;a) satisfies the stability condition~13! for all a, justify-
ing our assumption of replica symmetry. A comparison
~15a! with previous results @8,13# shows that R(a)
5ARG(a), whereRG corresponds to Gibb’s algorithm. Th
same equation relates the Bayesian generalizer to Gibb’
gorithm, as was demonstrated by Opper and Haussler@8#
with a method that makes explicit use of the committee m
chine architecture. The potentialV(l) may be obtained by
integration of~11!:

V~l!5E
t~l!

1`

g~ t8!S 11
dg~ t8!

dt8 Ddt8, ~17!

where t(l) is given by the inversion ofl5t1g(t;a), and
we imposed thatV(1`)50. This optimal potential endows
the perceptron with Bayesian generalization performa
and dependsimplicitly on the size of the training set throug
T. It presents a logarithmic divergenceV(l)'2T2ln(l) for
l→01. As V(l)5` for negative stabilities to ensure tha
l(t) is single valued, the optimal weight vector lieswithin
the version space. Forl→`, V(l)'T3exp(2l2/2T2)/l.
Thus the range of the potential decreases for increasing
ues ofa and vanishes asa→` showing that the most rel
evant patterns for learning are located within a narrow w
dow, on both sides of the student’s hyperplane, whose w
shrinks likeT for increasinga (T;1/a for a@1). With this
cost function, the optimal generalizer may be found by
simple gradient descent, with neither the need to train
infinite number of perceptrons for implementing a committ
machine, as was suggested by Opper and Haussler@8#, nor to
determine a large number of ‘‘samplers’’ of the versio
space, as proposed by Watkin@10#.

Once the potential is known, it is straightforward to ca
culate the distribution of stabilities of the training set:

r~g!5K K 1P(
m

d~g2gm!L L . ~18!

Its general expression is@5#

r~g!52E
2`

`

DtHS 2
t

TD d@l~ t !2g#, ~19!

with l(t)5t1g(t;a). In terms oft(g),
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55 7437FINITE SIZE SCALING OF THE BAYESIAN PERCEPTRON
r~g!5A2

p
expS 2t2~g!

2 DHS 2t~g!

T D dtdg
~g!, ~20!

which depends ona throughT. In the present case, as all th
patterns have positive stabilities,r(g) is the distribution of
the distances of the training patterns to the student’s hy
plane. Distributions obtained through a numerical invers
of l(t), for several values ofa, are plotted in Fig. 1@14#.
The density of patterns is exponentially sma
r(g)'@T/pg#exp@2T2/2(Rg)2# at small distance to the hy
perplane. It increases withg up to a maximum atgM(a). At
larger g there is a crossover to a Gaussian distributi
r(g)'(A2/p)exp(2g2/2) identical to the teacher’s one
Both gM(a) and the crossover distance get closer to
hyperplane with increasinga. In the largea limit, both
quantities vanish like 1/a, with gM'1.769/a. Thus the re-
gion of disagreement between the student’s and the teac
distributions decreases for increasing size of the training
In the limit a→`, the Bayesian distribution is identical t
the teacher’s one.

It is worthwhile to compare the present results with t
MSP, whose weight vector is the one with maximal distan
from all the hyperplanes that define the version space.
corresponding distributionr(g) presents a gap forg,k, and
a d peak atg5k, which is precisely half the smallest widt
of the version space. In the largea limit, k'1.004/a is
smaller thangM . The fact that the Bayesian student h
patterns at vanishing distance from the hyperplane, and
most patterns at distances larger thank, allows us to con-
clude that its weight vector lies close to the boundary of
version space. It has been shown@10# that the Bayesian
weight vector is the barycenter of the~strictly convex! ver-
sion space. Our result means that the barycenter of the
sion space is far from its center, which is rather surprisi
and might indicate that the version space is highly nonsph
cal. Notice that the teacher weight vector lies even close
the version space boundary, as it has a finite distribution
stabilities for allg.0. This explains why some potentia
recently proposed@5,9# may reach a generalization erro

FIG. 1. Distribution of distances of the training patterns to t
Bayesian separating hyperplane for different values ofa.
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lower than the MSP, in spite of the fact that they find
solution outside the version space, i.e., without correct
learning the complete training set.

III. SIMULATION RESULTS

The theoretical results of the preceding section were
tained in the thermodynamic limit,N→`, P→`, with
a5P/N finite. In this section we present results of thorou
numerical simulations that confirm very nicely the theore
cal predictions, and are precise enough to determine th
nite size corrections.

We describe first our implementation of the learning p
cedure. Given a training set, the optimal student is found
a gradient descent on the cost function~4! with potential
~17!. In practice, only the derivative of the potential
needed, and we do not need to perform the integration
~17!. As dV/dl is the function2g(t;a) defined by Eq.~16!,
evaluated att5t(l) given by~8!, we only have to invert the
equation l(t)5t1g(t;a). We calculated numerically
dV/dl for each value ofa considered. As the optimal po
tential diverges for negative stabilities, the minimization h
to be started with a weight vectorw(0) already inside the
version space. In our simulations, we determinedw(0) by
minimization of the cost function~4! with potential
V(l)512tanh(bg/2), in which the value ofb has to be
optimally tuned@5#. We used the implementation called Min
imerror @15#, that finds the best value ofb together with the
weights w(0) through a deterministic annealing. Startin
from w(0), theweights are iteratively modified through

w5w~k!2e~k!dw, ~21a!

dw5(
m

dV

dl
~gm;a!tmjm, ~21b!

w~k11!5AN
w

Aw•w
, ~21c!

wheregm is the stability~5! of patternm. Actually, the de-
rivative ]E/]w has two terms, and only one of them is tak
into account in Eq.~21b!. The neglected term, that contrib
utes to keepw•w constant only to first order ine, has been
replaced by the normalization~21c!. A straightforward cal-
culation shows that the component ofdw @Eq. ~21b!# or-
thogonal tow(k), dw'[dw2w(k)dw•w(k)/N, is propor-
tional to ]E/]w. Thus, at convergence,dw'

2[dw'•dw'

vanishes. Actually, the stopping condition in all our simu
tions wasdw'

2<10214.
The variable learning ratee(k), introduced to speed up

the convergence, is determined as follows. At each iterat
we calculate ~21a! for three different values ofe:
e(k21)/2, e(k21), and 5e(k21). The valuee(k21)/2
should prevent the oscillations that may appear for too la
learning rates, whereas 5e(k21) allows to accelerate the
convergence in regions where the potential is flat. At ea
iteration, we keep fore(k) the value that minimizesdw'

2 .
With this procedure, the initialization ofe is irrelevant; we
usede(0)51022 in all our tests.

In our simulations, we determined the generalization er
eg(a,N) and the distribution of stabilitiesr(g;a,N) as a
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7438 55BUHOT, TORRES MORENO, AND GORDON
function ofN anda. Givena andN, we generated training
setsLa of P5aN binary patterns. The components of th
input patternsjm of each training sample were chosen
random with probabilityp(j i

m51)5p(j i
m521)51/2 for all

1< i<N and 1<m<P. The corresponding output
tm5sgn(v•jm) are determined by a randomly select
teacher of normalized weightsv (v•v5N). We made simu-
lations fora51, 2, 4, 6, 8, 10, and 14, and we considered
least seven different values ofN for each value ofa. Each
training set was learnt with the optimal potential using~21!,
as explained before. The overlap between the obtained
malized weightsw* (La) and the teacher’s weightsv,
R(La ,N)5w* •v/N, determines the generalization error
the student perceptron,eg(La ,N)5arccos@R(La ,N)#/p.

We determined the generalization error for each p
(a,N), averaged over M (a,N) training sets,
eg(a,N)5($La%eg(La ,N)/M (a,N). The number of sample

M (a,N) was chosen large enough to have a good precis
in the extrapolation to 1/N→0. Values ofM (a,N) ranging
from 500 to 20 000~the larger number of samples corr
sponding to the smaller values ofP5aN) were used. Most
of the simulations were done on a parallel computer t
allows for 64 samples to be processed simultaneously.
obtained values ofeg(a,N) are represented on Fig. 2 as
function of 1/N. All the investigated values ofa show the
same behavior, and only some of them are reported on
figure for reasons of clarity. The generalization errors
linear in 1/N because for eacha we only considered value
of N large enough that the second order corrections in 1/N be
negligible. The fits to the numerical results extrapolate c
rectly to the theoretical valueseg(a) obtained in the thermo
dynamic limitN→`, P→` with a5P/N constant. The fi-
nite size corrections arenegative, meaning that in finite
dimension the expected generalization error islower than
predicted by the theory. This result can be understood if

FIG. 2. Average generalization error vs 1/N. Error bars are not
visible at the scale of the figure. Lines are least squared fits to
numerical data, which are extrapolated to 1/N50. Full symbols
correspond to the theoretical values.
t
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considers the information content of the training set inste
of its size. As the number of possible training patterns
2N, the training set carries~on the average! a fraction of
informationaN/2N which, at constanta, is larger the smaller
N. Moreover, givena.2, there is always a valueNa small
enough thataNa.2Na, i.e., such thatall the possible pat-
terns belong to the training set. One expects t
eg(a,Na)50, and thateg(a,N) increases smoothly for in
creasingN to reacheg(a,`) from below.

The variance of the generalization erro
sg
2(a,N)5($La%„eg(La ,N)2eg(a,N)…

2/M (a,N), is repre-

sented as a function of 1/N on Fig. 3 for all the values of
a considered. The fact that all the lines extrapolate to z
shows that, in the thermodynamic limit, the distribution
eg(La ,N) is a delta function: any randomly selected traini
set corresponding to the samea endows the perceptron with
the same typical generalization error, with probability one.
other words, the hypothesis of self-averaging, underlying
statistical mechanics calculations, is correct.

At finite size, the average generalization error and its va
ance depend onP5aN. To first order in 1/P, we may write

eg~a,N!5eg~a,`!2f~a!/P, ~22!

sg
2~a,N!5c~a!/P. ~23!

The behavior off(a) andc(a), displayed on Figs. 4 and 5
presents a crossover ata.2, i.e., in the neighborhood of th
perceptron’s capacity. At largea, f(a) is constant and
c(a) decreases smoothly, whereas at smalla, both quanti-
ties increase witha. Thus, as a function ofP, finite size
corrections toeg vanish slower ata&2 than at largea. This
is the reason why we needed a larger number of samples
low a in our simulations.

As N decreases, the mean value of the generalization
ror distribution,eg(a,N), shifts towards lower values, pro
portionally to 1/N. However, the broadening of the distribu

e
FIG. 3. Variance of the generalization error vs 1/N. Lines are

least squared fits to the numerical data.
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55 7439FINITE SIZE SCALING OF THE BAYESIAN PERCEPTRON
tion, sg(a,N);1/AN, overcompensates this effect. Thus,
spite of the negative correction toeg(a,`) at finiteN, there
is a finite probability that a particular trained perceptron g
eralize worse than the theoretical prediction.

The distributions of stabilities follow the same trends
the generalization error. Histograms, determined with so
of our results, are compared to the theoretical density dis
butions, on Figs. 6 and 7. On Fig. 6, numerical results
both the student and the teacher perceptrons, are displa
Although not clearly visible on the figure, the finite siz
teacher has less patterns at small distances to the sepa
hyperplane, the tail of the distribution being slightly highe

FIG. 4. Slope of the finite size corrections to the generalizat
error.

FIG. 5. Slope of the finite size variance of the generalizat
error.
-
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than the theoretical distribution. These discrepancies
much smaller than the finite size effects on the student p
ceptrons, which exhibit an increase of the pattern den
closer to the hyperplane, with a corresponding depletion
the peak atgM . These efects are enhanced at smallerN, as
may be seen on Fig. 7.

IV. CONCLUSION

In this paper, we presented numerical simulations of
simplest neural network, the perceptron, learning optimall
linear separation task from examples. They confirm the t

n

n

FIG. 6. Theoretical and numerical (N5100) distribution of sta-
bilities for the optimal student and the teacher fora54.

FIG. 7. Theoretical and numerical (N520 and 65) distribution
of stabilities for the optimal student fora56.



lin

e
th

th
f i

th
s,
er
ic
u-
fi-
io

e
o
ts
ro
y-
c

er-
, for
he
e-
-
li-

ity.
a-
ts a

ved

m
uld
ents
sults
tri-
ved

7440 55BUHOT, TORRES MORENO, AND GORDON
oretical predictions and present interesting finite size sca
behaviors.

After a derivation of the optimal learning potential, w
deduced the theoretical distribution of distances of
learned patterns to the separating hyperplane,r(g). Surpris-
ingly, the optimal student is predicted to be close to
boundary of the version space instead of being near o
center, as currently believed.

We presented extensive numerical simulations with
aim of clarifying to which extent the theoretical result
which predict the typical behaviour of the generalization
ror and the distribution of stabilities in the thermodynam
limit, are valid for finite size systems. In particular, the n
merically determined distribution of stabilities shows that
nite size optimal perceptrons lie even closer to the vers
space boundary than the theoretical prediction forN→`.
The extrapolation of the generalization erroreg to 1/N→0
averaged over a large number of samples, confirm the th
retical predictions with very high accuracy. The variance
eg vanishes in that limit, showing that all the training se
endow the perceptron with the same generalization er
with probability one. This is just what is meant by the h
pothesis of self-averaging underlying the replica approa
which is thus numerically validated.
y
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At finite N the mean generalization error issmaller than
the theoretical value. As the argument that allows to und
stand such result is independent of any learning scheme
it takes into account only the information content of t
training set, we expect it to be also valid for statistical m
chanics predictions ofeg for other learning algorithms. How
ever, it is worth pointing out that the width of the genera
zation error distribution grows with decreasingN faster than
the shift of the mean value.

As a function ofa, eg(a,N) shows two different scaling
regimes, depending on whethera.2 or a,2. The cross-
over atac52 might be correlated to the perceptron capac
As belowac any training set is expected to be linearly sep
rable, it seems likely that the generalization error presen
different scaling ata,ac . Theoretical calculations of finite
size corrections remain to be done, to clarify the obser
scaling regimes.

Although the simulations were done for binary rando
input vectors, the behavior of the generalization error sho
be the same for continuous input vectors whose compon
have zero mean and unit variance, as the theoretical re
only depend on the two first moments of the pattern dis
bution. It would be interesting to see whether the obser
crossover ata'2 persists in this case.
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