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Finite size scaling of the Bayesian perceptron
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We study numerically the properties of the Bayesian perceptron through a gradient descent on the optimal
cost function. The theoretical distribution of stabilities is deduced. It predicts that the optimal generalizer lies
close to the boundary of the space(efror-freg solutions. The numerical simulations are in good agreement
with the theoretical distribution. The extrapolation of the generalization error to infinite input space size agrees
with the theoretical results. Finite size corrections are negative and exhibit two different scaling regimes,
depending on the training set size. The variance of the generalization error vanishes foiconfirming the
property of self-averagindS1063-651X97)15406-X]

PACS numbdrs): 87.10+e, 02.50--r, 05.20-y

[. INTRODUCTION define themaximal stability(or maximum margih percep-
tron (MSP), that lies at the center of the version space, and
A neural network is able to infer an unknown rule from whose generalization error vanishes in the latgeegime
examples. We address specifically classification tasks ilike €;~0.5005/ [5,6]. As the training set only contains a
which a single neuron, perceptron connected tdN input  small fraction of the information needed to find the underly-

units through weightsw=(w, ... ,wy) attributes labels ing rule generating the examples, there is a lower bound to
=1 given by o=sgnfw-§ to input patterns €y, given by Bayes decision theofy]. Bayesian perfor-
&=(&,, ... ,&\). A perceptron is able to correctly classify mance may be implemented by what is called a committee

linearly separablgLS) problems; the hyperplane orthogonal machine[8]: through the vote of a large number of percep-
to w separates, in the input space, the patterns given positivigons trained with Gibbs algorithm. The Bayesian generali-
outputs from those given negative outputs. Given d.getf  zation error vanishes like;~0.442/x, in the limit of large
P=aN examples, i.e., training patter& (u=1,...,P) a. However, the convergence of the committee machine to
with their corresponding clasg*, the process of finding the the optimum is guaranteed only in the limit of an infinite
weightsw is calledlearning Generally, if the problem is LS, number of preceptrons. In order to circumvent the complex-
there is a finite volume of error-free solutions in weightsity of the committee machine, several learning algorithms for
space. This volume is callegersion space single perceptrons, based on the minimizatiomathoccost
Most of the learning algorithms proposed so far may befunctions, have been recently propogédbs,d. In these ap-
stated as the minimization of a cost function or empirical riskproaches, the cost function is sought within a given class of
E(w;L,) in the weights space. The structure of the problemfunctions and has a free parameter which has to be optimized
of learning from examples allows for a statistical mechanicgor each value ofa, the fraction of training patterns. The
analysis, in which the cost function is considered as an engeneralization performance of these algorithms is \choge
ergy. The performance of the learning algorithm is calculatedo the Bayesian optimal value. Some of them end up with a
through thermal averages with Boltzman distribution infinite fraction of training errors, suggesting that the optimal
weights space and quenched averages over all the possilsielution might lie outside the version space, but it has been
training sets. In the thermodynamic liniit— o, P—co with established that this is not the cd4€]. More recently, the
a=P/N constant, the zero temperature limit of these avercost function that minimizes the generalization error, was
ages accounts for thgpical behavior of the algorithm. The determined through a variational approach, and it was
fraction of training errorg;, the generalization errasy, and ~ showed that its minimum endows the perceptron with the
the distribution of distances of the training patterns to theoptimal, Bayesian, generalization performant|.
separating hyperplang(y) can be determined with the as-  In this paper, after a somewhat different derivation of the
sumption of self-averaging. optimal cost function, we determine the typical distribution
The minimization of the number of training errors, called of distances of the training patterns to the Bayesian hyper-
the Gibbs algorithm, is not the best learning strategy in thélane, and we present simulation results that confirm the the-
case of LS problems, because it picks up one point in versiofretical predictions. We find that the optimal Bayesian stu-
space at random. Its typical generalization efsme(6) be-  dent lies close to théoundaryof the version space. The
low for the definitior] vanishes with the size of the training finite size corrections to the generalization error are negative
set like e,~0.625/x [1]. A more elaborate strategy is to look and present two different scaling behaviors as a function of
for those weights in version space that maximize the distance-
of the separating hyperplane to its closest training patterns
[2,3]. These patterns are called the support veditsand Il. THEORETICAL RESULTS

In this section, we present an alternative derivation of the
*Also at Centre National de la Recherche Scientifique. optimal potential for learning linearly separable tasks for
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completeness and we deduce the training patterns distaneghere the potential/ depends on the training pattemnand
distribution. The theoretical problem is formulated as fol-its class through the stability

lows: the probability that the classifier assigns class$o

pattern & after training with a seL, of aN examples is — w- & 5
P(ol{&W,L 1) =0(ow- &P(W|L,)P(&), where O(x) is T e ®)

the Heaviside function. In general tip®sterior probability

P(w|L,) is determined through the minimization of a cost As the outputss* and 7 are invariant under the transfor-
function E(w;L,) which depends on the training set. In or- mationsw,v—aw,a’v with a,a’>0, the teacher’s and stu-
der to derive the properties of a training algorithm minimiz- dent’'s weights spaces may be restricted to the hyperspheres
ing a cost function, it is useful to introduce a fictitious tem-w?=N andv?=N respectively without any loss of general-
perature 18, and consider the finite temperature probability ity. Most training algorithms can be cast in the fofs). If

the minimum of(4) is unique and/(y) is differentiable, the

PWIL.: B) = p(w) e PEWL.) 1) weightsw can be obtained by a gradient descent. This is not
@ Z(L,;8) "’ the case for Gibbs algorithm, whose potential is the nondif-
ferentiable error-counting functio®(y)=0(— 7).
where p(w), called theprior probability density, allows to The generalization errogg(w) is the probability that a
impose constraints to the weights, anflL, ; B) is the parti-  pattern, chosen at random with the same probability density
tion function as the training patterns, be misclassified by the student per-

ceptron. Its typical value depends on the overlap

R={({v-w/N)) between the student and the teacher weight
Z(L,:B)= f exd — BE(w;L,) Ip(w)dw. 2 Vecférsw ang\,, ’

The typical behavior of any intensive quantity(w) is ob- _ _ E

tained under the assumption of self-averaging through the eg={{eg(W))) WarccoR ®
guenched average ovall the possible training sets, of the o _ _ _
same sizex, in the thermodynamic limiN—c (taken at We assume that the training patterns are identically dis-
constante= P/N) and in the zero temperature limit: tributed random variables whose components have zero

mean(§/)=0 and unit varianc&&/‘&) =4, . The free

. . energy per neuron is averaged over the training sets with the
((X))= lim j P(L,)dL,| lim J X(W)P(W|L4;B8)dw|. replica method under the assumptionreplica symmetry
N=e po which will be shown to be stable. The extremum conditions

C) on the free energy that determine the oveffapre[5]

where ((...)) stands for the double average, over the " t

weightsw and the training setk,, . 1— R2=2af H )()\(t;c)—t)th, (78
If the cost function has a unique minimuwi (L,) (this V1-R

may not be the case, as happens when the cost function is the

number of training errods then P(w|L,) = s(w—w*(L,)). o t2 (\(t;c)—t)dt

In this case, the average between bracke(8)iis reduced to R= ZaJwexp{ T 201- RZ)) 2R 3

X(L,,N), which is a random variable that depends on the

particular training set realization througlf (L,). The width  with  Du=exp(-u¥2)du/y27 and H(t)=/7Du

of its probability distribution function is expected to vanish =(1/2)erfc(t/\/§). The parametet is the B—oo limit of

in the thermodynamic limit, i.e., all the training sets endowﬂ(l_q), whereq is the overlap between two solutions in
the perceptron with the same properties, with probabilityihe student's space. If the cost functiet) has a single glo-
one. This property is called self-averaging. As & CONSeha| minimum,q—1 andc is finite. The function\ (t:c),
quenceX(L,,N) may be calculated by averaging over all yetermined by the saddle point equation of the free energy
the possible training sets to get rid of the particular training,, B—, minimizes W(\)=V(\)+(A—t)2/2c with re-

set realization. The replica methoq of statistical mechanic§peCt tox. For cost functions having continous derivatives
has been developped to cope with the averages over SR-(t. c) satisfies

called quenched variables which in this case correspond to
the realizationd. , . dv

Consider the paradigm of learning a LS rule from ex- t=?\+Cﬁ(?\)- (8)
amples: for each patterf*, a teacherperceptron of weight

vectorv defines the corresponding targét=sgn{v- £“). As  The solution to(7) has to verify the necessary condition for

usual, we assume that tie=aN training patterns are inde- |gcal stability of the replica symmetric solutig6]:
pendently selected with a probability density function

P(£"), and that the cost function th&tudent’'sweightsw +oo
ZaJ

—0o0

(7b)

have to minimize is an additive function of the examples, DtH

t
)(A’(t;C)—l)2< 1, 9

IR
P

E(wL. )= V(™). 4 where N’ =g\/dt. It has recently been shown thed) can
(Wik-o) le (") @ only be satisfied if8) is invertible, which imposegL2]:

— o0
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If V(\) is known, ¢, can be calculated through the solu-
tion of Egs.(7a and(7b). Instead of solving this direct prob- )
lem, we are interested in finding tlhestpotential within the —1/ N — 1-Rr
. . 5 N n (a)=2 . (15b)
class of functions having continuous derivatives. Instead of R

using Schwartz inequality as ji 1], we show that a straight-

forward functional maximization oR leads to the same re- They determine, througti4), the functiong for each value
sult. As only the producBV appears in the partition function Of a:

(2), we can multiply the potential/ and the temperature

1/8 by the same constat>0 leavingZ(L,;B) invariant.
This transformation changes—c/a in (8) and(10), leaving
R unchanged. Thus, we may impose 1 throughout with-

g(t;a)sz%lnH(—%), (16)

out any loss of generality, which amounts to choosing thevhere we wroteg(t;«) to stress thea dependence, and

energy units.

A further simplification arises from considerirfg as a
functional of V through g(t)=A(t)—t. For then we can
write

d

\Y,
9(t)=— -\ (1), ay

where )\ (t) is the solution to(8). Equations(7) and (9) be-
come respectively

t
J1—R?

Dt=af(R,9),
(12a

1—R2=2a£ g?(t)H

=ah(R,0),
(12b)

_a(® p( t2 ) dt
R—; _mg(t)ex " 2(1-RY N

Dt<1. (13

2a [ @ wym| - =
“)..59 N

Givena, Egs.(12a, (12b), and(13) must be simultaneously

verified by the functiorg(t) that maximizeR. We look for
solutiong(t) that maximizeg12b), with (129 considered as
a constraint, introduced through a Lagrange multipljieAs

it is not easy to impose inequalitfl3) as supplementary

constraint,  we maximize R=ah(R,g)+ 7[1—R?

—af(R,g)] and we will show that our result is consistent,

i.e., that theg(t) obtained does indeed verify conditiofi<)
and (13). The function g(t) that maximizesR satisfies
SR/ 5g(t)=0, which implies sh/ég= noéf/ég, where
6(- - )/ 6g stands for the functional derivative of {-) with

respect ta@(t). It is straightforward to deduce the expression

for g:
R2t?
! ex"(‘Z(l—RZ))
9(t)= > . (19
2\27(1-R?) H(_ Rt
1-R

where» andR depend implicitly one. After introduction of
(14) into (12), we find the solution®R(a)=TR and 5(a):

T?=(1-R?»IR? It is straightforward to verify that
g(t; ) satisfies the stability conditiof13) for all «, justify-

ing our assumption of replica symmetry. A comparison of
(159 with previous results[8,13] shows that R(«)
=+Rg(a), whereRg corresponds to Gibb’s algorithm. The
same equation relates the Bayesian generalizer to Gibb'’s al-
gorithm, as was demonstrated by Opper and Haug8ler
with a method that makes explicit use of the committee ma-
chine architecture. The potentisf(\) may be obtained by
integration of(11):

17

+ oo d 4
V(A)=f gt"| 1+ Lt,))dt’,
t(n) dt

wheret(\) is given by the inversion ok =t+g(t;«), and
we imposed thaV/(+«)=0. This optimal potential endows
the perceptron with Bayesian generalization performance
and dependsnplicitly on the size of the training set through
T. It presents a logarithmic divergen®#\)~ — T?In(\) for
A—0%. As V(\)=c for negative stabilities to ensure that
N\ (t) is single valued, the optimal weight vector liesthin
the version space. Fox—o, V(\)=T3exp(—\%2T?)/\.
Thus the range of the potential decreases for increasing val-
ues ofa and vanishes aa— o« showing that the most rel-
evant patterns for learning are located within a narrow win-
dow, on both sides of the student’s hyperplane, whose width
shrinks likeT for increasinga (T~ 1/a for a>1). With this
cost function, the optimal generalizer may be found by a
simple gradient descent, with neither the need to train an
infinite number of perceptrons for implementing a committee
machine, as was suggested by Opper and HaUsletor to
determine a large number of “samplers” of the version
space, as proposed by WatKit0].

Once the potential is known, it is straightforward to cal-
culate the distribution of stabilities of the training set:

1
p<y>=<<52 5(y—w>>>. (18)
Its general expression [§]
® t
pn=2 o~ 1lo-n. a9

with A(t)=t+g(t;a). In terms oft(y),
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p(7) lower than the MSP, in spite of the fact that they find a
1.2 y T solution outside the version space, i.e., without correctly

learning the complete training set.

Ill. SIMULATION RESULTS

The theoretical results of the preceding section were ob-
tained in the thermodynamic limitN—o, P—oo, with
a=P/N finite. In this section we present results of thorough
numerical simulations that confirm very nicely the theoreti-
cal predictions, and are precise enough to determine the fi-
nite size corrections.

We describe first our implementation of the learning pro-
cedure. Given a training set, the optimal student is found by
a gradient descent on the cost functi@h with potential
(17). In practice, only the derivative of the potential is
needed, and we do not need to perform the integration in
(17). AsdV/d\ is the function—g(t; @) defined by Eq(16),
evaluated at=t(\) given by(8), we only have to invert the

FIG. 1. Distribution of distances of the training patterns to the®duation A(t)=t+g(t;a). We calculated numerically
Bayesian separating hyperplane for different values of dV/d\ for each value ofx considered. As the optimal po-
tential diverges for negative stabilities, the minimization has

\/E —t2(y) —t(y)) dt to be started with a weight vectav(0) already inside the
p(y)= ;exrl( 5 )H< T )5(7), (20)

version space. In our simulations, we determingd) by
minimization of the cost function(4) with potential

which depends om throughT. In the present case, as all the Y(}) =1—tanh(8y/2), in which the value of3 has to be

patterns have positive stabilities(y) is the distribution of _optimally tunec[5]._ We used the implementation cal!ed Min-
the distances of the training patterns to the student's hypefMerror[15], that finds the best value ¢ together with the

plane. Distributions obtained through a numerical inversionV€ights w(0) through a deterministic annealing. Starting
of A(t), for several values of, are plotted in Fig. 114]. from w(0), theweights are iteratively modified through

The density of patterns is exponentially small, w=w(k)— e(k) dw (213
p(y)=[Tlmylexd —T42(Ry)?] at small distance to the hy- '
perplane. It increases with up to a maximum aty(«). At
larger y there is a crossover to a Gaussian distribution,
p(y)~(\2Im)exp(+42) identical to the teacher's one.
Both yy(«) and the crossover distance get closer to the
hyperplane with increasinge. In the largea limit, both w(k+ 1):\/NL’ (210
guantities vanish like W, with yy~1.769/«. Thus the re- VW- W

gion of disagreement between the student’s and the teacher’s

distributions decreases for increasing size of the training setVhere y* is the stability(5) of patternu. Actually, the de-
In the limit a—, the Bayesian distribution is identical to Mvative JE/ow has two terms, and only one of them is taken

the teacher’s one. into account in Eq(21b). The neglected term, that contrib-

It is worthwhile to compare the present results with theUtes to keepv-w constant only to first order ie, has been
MSP, whose weight vector is the one with maximal distancd€Placed by the normalizatiof21q). A straightforward cal-
from all the hyperplanes that define the version space. Theulation shows that the component 6 [Eq. (21b)] or-
corresponding distributiop(y) presents a gap foy<«, and ~ thogonal tow(k), &NLE&N_W(k)&N'W(k)/Z'\‘v IS propor-

a & peak aty= «, which is precisely half the smallest width tional to dE/dw. Thus, at convergencejw| = éw, - 6w,

of the version space. In the large limit, x~1.004/ is vanishes. Actually, the stopping condition in all our simula-
smaller thanyy . The fact that the Bayesian student hastions wasew? <10~

patterns at vanishing distance from the hyperplane, and has The variable learning rate(k), introduced to speed up
most patterns at distances larger thanallows us to con- the convergence, is determined as follows. At each iteration,
clude that its weight vector lies close to the boundary of theve calculate (218 for three different values ofe:
version space. It has been shol0] that the Bayesian €(k—1)/2, e(k—1), and %(k—1). The valuee(k—1)/2
weight vector is the barycenter of tfstrictly convey ver-  should prevent the oscillations that may appear for too large
sion space. Our result means that the barycenter of the velearning rates, whereasegk—1) allows to accelerate the
sion space is far from its center, which is rather surprisingconvergence in regions where the potential is flat. At each
and might indicate that the version space is highly nonspheriteration, we keep for(k) the value that minimizegw? .

cal. Notice that the teacher weight vector lies even closer taVith this procedure, the initialization of is irrelevant; we
the version space boundary, as it has a finite distribution ofisede(0)=10"2 in all our tests.

stabilities for all y>0. This explains why some potentials  In our simulations, we determined the generalization error
recently proposed5,9] may reach a generalization error 4(a,N) and the distribution of stabilitiep(y;a,N) as a

dv
aw:; o (e, (21b)
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FIG. 2. Average generalization error vaNl/Error bars are not FIG. 3. Variance of the generalization error vi\1Lines are
visible at the scale of the figure. Lines are least squared fits to thg, ;¢ squared fits to the numerical data.
numerical data, which are extrapolated ttN#0. Full symbols

correspond to the theoretical values. considers the information content of the training set instead

of its size. As the number of possible training patterns is
2N the training set carriegon the averagea fraction of
informationaN/2" which, at constant, is larger the smaller

function of N and «. Given o andN, we generated training
setsL, of P=aN binary patterns. The components of the

input patt_ernsgf’“ of _gach training sample were chosen aty Moreover, givenw>2, there is always a valus,, small
random with probabilip(&f'=1)=p(¢f'=—1)=1/2forall  o55h thatwN,>2Ve, i.e., such thatll the possible pat-
1<i=N and Isp<P. The corresponding ouUlpUIS o™ pelong to the training set. One expects that

r=sgniy-£) are determined by a randomly selected, (, N,)=0, and thatey(a,N) increases smoothly for in-
teacher of normalized weights(v-v=N). We made simu- creasingN to reacheg(a,=) from below.

:atiOPS fora=d%4 2, 4; 6, 73 10&a][1d 14, ;‘”d ‘I’VG c?;silger(;d al The variance of the generalization  error,
east seven different values dF for each value ofx. Eac 2 _ 2 ;
training set was learnt with the optimal potential usi@d), 7@ N) =2 (ég(La N) = ég(@:N))TM(a:N), is repre
as explained before. The overlap between the obtained no
malized weightsw*(L,) and the teacher's weights,
R(L,,N)=w*-v/N, determines the generalization error o
the student perceptrowg(L ,,N) =arcco$R(L ,,N)]/ 7.

We determined the generalization error for each pai

sented as a function of N/on Fig. 3 for all the values of

a considered. The fact that all the lines extrapolate to zero
fshows that, in the thermodynamic limit, the distribution of
(L, ,N) is a delta function: any randomly selected training
set corresponding to the sameesndows the perceptron with
the same typical generalization error, with probability one. In

,N), averaged over M(a,N trainin sets, . ! .
(ea(a)N):EV eg(L N);/M(a N()C_vﬂ?e numl:l)elr gf samples other words, the hypothesis of self-averaging, underlying the
g {La=gt e ' . statistical mechanics calculations, is correct.

M(a,N) was chosen large enough to have a good precision - a; finjte size, the average generalization error and its vari-

in the extrapolation to N—0. Values ofM(a,N) ranging  ance depend oR = aN. To first order in 1P, we may write
from 500 to 20 000(the larger number of samples corre-

sponding to the smaller values Bf= aN) were used. Most eq(a,N)=¢4(a,»)— ¢(a)/P, (22
of the simulations were done on a parallel computer that
allows for 64 samples to be processed simultaneously. The a'é(a,N)= Y(a)lP. (23

obtained values oty(a,N) are represented on Fig. 2 as a

function of 1N. All the investigated values ok show the The behavior of(«) andy(«), displayed on Figs. 4 and 5,
same behavior, and only some of them are reported on thgresents a crossover at=2, i.e., in the neighborhood of the
figure for reasons of clarity. The generalization errors areperceptron’s capacity. At larger, ¢(«) is constant and
linear in 1N because for eachr we only considered values #(«) decreases smoothly, whereas at smalboth quanti-
of N large enough that the second order correctionshhide  ties increase withw. Thus, as a function oP, finite size
negligible. The fits to the numerical results extrapolate cor<corrections tcey vanish slower atv<2 than at larger. This
rectly to the theoretical valueg,(a) obtained in the thermo- is the reason why we needed a larger number of samples for
dynamic limitN— oo, P—o with @=P/N constant. The fi- low « in our simulations.

nite size corrections ar@egative meaning that in finite As N decreases, the mean value of the generalization er-
dimension the expected generalization errofawer than  ror distribution, €,(a,N), shifts towards lower values, pro-
predicted by the theory. This result can be understood if on@ortionally to 1N. However, the broadening of the distribu-
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FIG. 4. Slope of the finite size corrections to the generalization
error. FIG. 6. Theoretical and numericaN& 100) distribution of sta-
bilities for the optimal student and the teacher for 4.

tion, og(a,N)~1/\/ﬁ, overcompensates this effect. Thus, in

spite of the negative correction tg(«,>) at finite N, there
is a finite probability that a particular trained perceptron gen

than the theoretical distribution. These discrepancies are
much smaller than the finite size effects on the student per-
eralize worse than the theoretical prediction ceptrons, which exhibit an increase of the pattern density

The distributions of stabilities follow the same trends asCl0Ser t0 the hyperplane, with a corresponding depletion of

the generalization error. Histograms, determined with som&® P€ak atyy . These efects are enhanced at smaileas

of our results, are compared to the theoretical density distriM@Y Pe seen on Fig. 7.

butions, on Figs. 6 and 7. On Fig. 6, numerical results for

both the student and the teacher perceptrons, are displayed. IV. CONCLUSION
Although not clearly visible on the figure, the finite size
teacher has less patterns at small distances to the separat'gl
hyperplane, the tail of the distribution being slightly higher

In this paper, we presented numerical simulations of the
ﬂwplest neural network, the perceptron, learning optimally a
'linear separation task from examples. They confirm the the-

10° y(o)) T T ]
o 1 r 1 o i
400F = = 10
b
Pty |
300 | - .
w
n
200 |- - - 0,5 =6
- Student N =20
Student N =65
100 - s ——— Student Theory
-------- Teacher Theory
O N N N N 1 N 2 s N 1 N N N N 0’0 . N N ] L L M 1 M N N 1 N N 2
0 5 10 15 0,00 0,25 0,50 0,75 1,00
o Y

FIG. 5. Slope of the finite size variance of the generalization FIG. 7. Theoretical and numericaN& 20 and 65) distribution
error. of stabilities for the optimal student far=6.
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oretical predictions and present interesting finite size scaling At finite N the mean generalization error $snallerthan
behaviors. the theoretical value. As the argument that allows to under-

After a derivation of the optimal learning potential, we stand such result is independent of any learning scheme, for
deduced the theoretical distribution of distances of thet takes into account only the information content of the
learned patterns to the separating hyperplaiie). Surpris-  training set, we expect it to be also valid for statistical me-
ingly, the optimal student is predicted to be close to thechanics predictions of, for other learning algorithms. How-
boundary of the version space instead of being near of itever, it is worth pointing out that the width of the generali-
center, as currently believed. zation error distribution grows with decreasiNgfaster than

We presented extensive numerical simulations with thehe shift of the mean value.
aim of clarifying to which extent the theoretical results, As a function ofe, €,(a,N) shows two different scaling
which predict the typical behaviour of the generalization er-regimes, depending on whethei>2 or a<2. The cross-
ror and the distribution of stabilities in the thermodynamicover ata.=2 might be correlated to the perceptron capacity.
limit, are valid for finite size systems. In particular, the nu- As below . any training set is expected to be linearly sepa-
merically determined distribution of stabilities shows that fi- rable, it seems likely that the generalization error presents a
nite size optimal perceptrons lie even closer to the versionlifferent scaling aw<<«a. Theoretical calculations of finite
space boundary than the theoretical prediction Nor . size corrections remain to be done, to clarify the observed
The extrapolation of the generalization erigyto IN—0  scaling regimes.
averaged over a large number of samples, confirm the theo- Although the simulations were done for binary random
retical predictions with very high accuracy. The variance ofinput vectors, the behavior of the generalization error should
€4 vanishes in that limit, showing that all the training setsbe the same for continuous input vectors whose components
endow the perceptron with the same generalization errohave zero mean and unit variance, as the theoretical results
with probability one. This is just what is meant by the hy- only depend on the two first moments of the pattern distri-
pothesis of self-averaging underlying the replica approachhution. It would be interesting to see whether the observed
which is thus numerically validated. crossover atv~2 persists in this case.
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