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Département de Recherche Fondamentale sur la Matière Condenśee, CEA/Grenoble – 17, Av. des
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Abstract. We study the classification of sonar targets first introduced by Gorman & Sejnowski
(1988). We discovered that not only the training setand the test set of this benchmark are both
linearly separable, although by different hyperplanes, but that thecompleteset of patterns, training
and test patterns together, is also linearly separable. The distances of the patterns to the separating
hyperplane determined by learning with the training set alone, and to the one determined by learning
the complete data set, are presented.

It has become a current practice to test the performance of learning algorithms on
realistic benchmark problems. The underlying difficulty of such tests is that in gen-
eral these problems are not well characterized: given a solution to the classification
problem, it is impossible to decide whether a better one exists.

The sonar signals benchmark [1] has been widely used to test learning algorithms
[2–10]. In this problem the classifier has to discriminate if a given sonar return
was produced by a metal cylinder or by a cylindrically shaped rock in the same
environment. The benchmark contains 208 preprocessed sonar spectra defined
by N = 60 real values in the range [0, 1], and their corresponding class. Among
these, the firstP = 104 patterns are usually used as thetraining setto determine the
classifier parameters. The fraction of misclassified patterns among the remaining
G = 104 spectra, thetest set, is used to estimate the generalization error produced
by the learning algorithm.

We studied this benchmark with Minimerror, a training algorithm forbinary
perceptrons [11, 12] that allows for a gradient search of normalized weights~w,
~w � ~w = N , through the minimization of a parameterized cost function,
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V (x) = 1� tanh(x): (2)
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where~�� is the input pattern (� = 1; � � � ; P ), �� = �1 its class. We arbitrarily
defined� = +1 for mines and� = �1 for rocks. The parameterT , called
temperature (for reasons related to the interpretation of the cost function), defines an
effective window width on both sides of the separating hyperplane. The derivative
dV (x)=dx is vanishingly small outside this window. Therefore, if the minimum
of cost (1) is searched through a gradient descent, only the patterns at a distance
d� � j~w � ~��j=

p
N < 2T will contribute significantly to learning. The algorithm

Minimerror implements this minimization starting at high temperature. The weights
are initialized with Hebb’s rule, which is the minimum of (1) in the high temperature
limit. Then,T is slowly decreased upon the successive iterations of the gradient
descent – a procedure calleddeterministic annealing– so that only the patterns
within the narrowing window of width 2T are effectively taken into account to
calculate the correction� ~w = �� @E=@ ~w at each time step, where� is the learning
rate. Thus, the search of the hyperplane becomes more and more local as the number
of iterations increases. In practical implementations, it was found that convergence
is considerably speeded-up if already learned patterns are considered at a lower
temperatureTL than not learned ones,TL < T . The algorithm Minimerror has
three free parameters: the learning rate� of the gradient descent, the temperature
ratio TL=T , and the annealing rate�T at which the temperature is decreased. At
convergence, a last minimization withTL = T is performed. Further details of the
implementation of Minimerror may be found in [11, 12].

Coming back to the sonar signals, we found that not only both the training set
(i.e. the firstP = 104 patterns hereafter called the ‘standard’ training set) and the
test set (i.e. the lastG = 104 patterns) of the benchmark are linearly separable, a
fact already reported [13, 14], but that also the complete set ofP+G = 208 patterns
is linearly separable. The algorithm Minimerror finds the separating hyperplanes
within a broad range of parameter values. The generalization error of the weights
~wP that separate the standard training set is�g �= 22%, corresponding to 23
classification errors on the test set. A lower generalization error may be obtained
through early stopping,i.e. by stopping the algorithm before convergence. Our
best generalization performance,�g �= 15% (16 errors), was obtained by stopping
with 8 training errors (we denote~wPe the corresponding weights). However, the
overall performance (training and test errors added together) is worse than the one
obtained with the weights~wP . By training with the patterns usually used as test set
(i.e. the lastG = 104 patterns of the sonar data base) we determined weights~wG

that linearly separate the test set. The corresponding generalization error estimated
using theP first patterns as test set is�g �= 23% (24 errors). Finally, by training
with the complete set ofP +G = 208 patterns, weights~wP+G separatingall the
patterns could be found, showing that this benchmark is linearly separable.

The weights~w obtained by training with the different sets are normal to the
corresponding separating hyperplanes. The projections of the patterns onto the
unitary vectors~w=

p
N , d� � ~w � ~��=

p
N , are proportional to the weighted sum;

jd�j is the distance of pattern� to the separating hyperplane, whereas sign(d�) is
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Figure 1. Distance of the patterns to the separating hyperplane, with a sign corresponding to
the actual perceptron’s output. The correct class is�

� (�� = +1 for mines,�� = �1 for
rocks). (a) Hyperplane determined with the standard training set (contains the firstP = 104
patterns of the sonar data set), showing the 23 errors on the test set. (b) Hyperplane determined
with the complete sonar data set ofP +G = 208 patterns.

the actual network’s output to pattern�. We represented on figure 1 the values of
d� corresponding to~wP and ~wP+G, as a function of the pattern number. It may
be seen that weights~wP correspond to a robust solution: there is a gap, of width
� = 0:1226 free of training patterns, on both sides of the hyperplane. This gap is
much more narrow (� = 0:00284) – hardly visible on the figure – for the solution
separating the complete data set, showing that this is a much harder problem.

Finally, let us point out that the different weights arenot close to each other,
as may be seen by pairwise comparison of the overlapsRa;b = ~wa � ~wb=N , that
should be 1 for identical solutions. The overlaps between our different solutions are
RP;G = �0:124,RP;P+G = 0:580,RG;P+G = 0:543; whereas the corresponding
overlaps with early stopping results obtained with theP patterns of the standard
training set areRPe;P = 0:516,RPe;G = 0:345,RPe;P+G = 0:525. These results
are not surprising, as it is well known that typically,i.e.with probability close to 1,
up to 2N not correlated patterns are linearly separable inN dimensions [15], and
this number increases if patterns are correlated [16].
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