ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 151-156

Numerical simulations of an optimal
algorithm for supervised learning

A. Buhot, J.-M. Torres Moreno and M. B. Gordon *

Département de Recherche Fondamentale sur la Matiére
Condensée,
CEA/Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9,
France

Abstract. We study numerically an optimal learning algorithm for
offline supervised noiseless training of a perceptron, that reaches bayesian
generalization. We obtain the finite size corrections of the generalization
error and its variance. The latter vanishes like 1/N, thus justifying the
assumption of self-averaging done in analytical calculations. We also
determined the stabilities distribution of the optimal student.

1. Introduction

Recently, the generalization properties of the optimal (bayesian) perceptron
learning a linearly separable task have been predicted [1]. The optimal cost
function, whose minimimum corresponds to the bayesian performance, has been
also determined [2, 3] through a functional minimization of the generalization
error within a statistical mechanics approach. In this paper, we present a nu-
merical study of the offline (batch) learning of the bayesian perceptron using
this optimal cost function. The extrapolation of our results to the thermo-
dynamical limit verify the theoretical predictions and allowed us to determine
the finite size scaling of the generalization error. A presentation of the cost
function is given in section 2. A description of our implementation is described
in section 3. Our simulation results are discussed in section 4.

2. Bayesian learning

In this paper we address the problem of learning pattern classification with a
perceptron of N inputs, hereafter called student. The N dimensional student
weight vector J has to be found knowing a training set L, of P = oN training
patterns S# (u = 1,..., P) with their corresponding classes 7# = x1. To
ensure that the task is learnable ¢.e. linearly separable, the classes are given by
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a leacher perceptron of weight vector B through r# = sign(B - S#). As usual,
the student’s learning performance is measured through the generalization error

€4 = arccos(R) (1)
noindent where
_31.B .
3118y

with [|X|| = VX -X. As 7# and the student’s outputs o* = sign(J - S¥) are
both invariant under the transformations J — aJ, B — /B with a,a’ > 0, the
student’s and the teacher’s weight space may be restricted to the hyperspheres
[13]] = ||B]] = V/N without any loss of generality.

The student’s weights are obtained by minimization of a cost that is an
additive function of the patterns of the form

P
E@J,La) = V(v*) (3)
p=1

where the potential V(7*) depends on the training patterns through their sta-
bility: y* = 7#J - $#/v/N which is positive if the perceptron with weight vec-
tor J classifies correctly pattern p. Students trained with different potentials
have different properties that can be theoretically studied within the statisti-
cal mechanics approach, in the thermodynamic limit, i.e. N — 400 with o
constant. Opper and Haussler [1] determined the smallest generalization error
B ¢ (@) = arccos(Rp), i.e. the bayesian error, that may be reached by offline
learnlng under the assumption that the components of the training patterns,
S (i=1,---,N), are independent identically distributed random variables of
zero mean (S}') = 0 and variance (S* S7) = 8;56,,. However, their implemen-
tation of the bayesian generalizer needs that an infinite number of perceptrons
be trained and compete through a vote. Several authors [4, 5, 6] proposed
parametrized cost functions whose minimum endows the trained perceptron
with generalization error very close to the bayesian one, provided that the cor-
responding parameter is adequately tuned. Watkin [8] showed that it exists a
weight vector corresponding to bayesian performance within the version space,
i.e. In the sub-space containing the weights that classify correctly the training
set, but none of the proposed cost functions was able to find it.

Assuming the same pattern distribution as Opper and Haussler [1], it is
possible to derive such optimal potential through a functional minimization of
the generalization error. This potential [2, 3] depends implicitly on o through
the parameter R (2), that must satisfy:

exp( t2R2/2)
s s [ e ) ®

where Dt = dt exp(—t?/2)/+v/2m and H(z) = [° Dt. This is the same equation
that was found by Opper and Haussler [1] for Rp, proving that the optimal
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potential will endow the perceptron with bayesian performance. The equations
that determine the optimal potential are:

%w» = —g(0), (5)

s =90 ~t= TS ImH(-L) (6)

where T' = /(1 — R?)/R?. Equation (6) has to be inverted to find the expres-
sion of V() by integration of (5). It may be shown [2, 3] that V(7) is infinite
for v < 0 and a monotonic decreasing function of 4 for ¥ > 0 that vanishes for
¥ — 00. The convexity of the potential ensures that the cost function has a
unique minimum.

The distribution of stabilities p(7) of the training patterns may also be
deduced within the statistical mechanics approach [7]. In the present case,
where all the stabilities are positives, this distribution is nothing else than the
distribution of distances of the training patterns to the separating hyperplane
(orthogonal to J). in the case of the optimal potential, we find the following
analytical expression: »

p(7) = \/gexp (—%7—)> H (i(:%)) %(7) (7)

where ¢() is given by the inversion of (6), that depends implicitly on o through
T. The details of the calculations will be published elsewere [3].

3. The algorithm

In practical implementations, as the optimal potential is infinite for negative
stabilities, the initial weight vector for the minimization of the cost function
(3) must lay inside the version space. As the training set is linearly separable,
several algorithms, like the Perceptron learning algorithm, are available to find
the initial weights. We used the algorithm Minimerror [9], whose potential
V(y) = 1 —tanh(B7/2) was proposed by Gordon and Grempel [4]. The value
of B that gives optimal generalization depends on a, but instead of using the
theoretical value, Minimerror increases # upon learning, until a convergence
criterium is meet [9]. Using the weights determined with Minimerror as start-
ing point, the bayesian student is found by a simple gradient descent on cost
function (3) with the optimal potential. At each step of the gradient descent,
the new normalized weights J(k + 1) are given by:
JI
J(k + 1) = \/N m (8)

where
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JI
§3(k)

I(k) — e(k) 63 (k) (9)
S V() SH o (10)

1

with y#(k) = r#J(k) - S*/v/N. We control the convergence of the algorithm
through the norm [|6J y (k)|| = ||6J (k) — I(k)(8I(k) - J(k))/N||, which vanishes
at the minimum of the cost function. Therefore, we do not need to integrate
(5), as only the derivative V'(y) = dV/d7y is needed in (10). This only requires
the numerical inversion of (6), that has to be done for each value of o. The
stopping condition in all our simulations was ||6J 1 (k)|| < 10~7. The variable
learning rate (k) was determined at each step k + 1 as follows: three different
students J’ were calculated, with learning rates e(k)/2, e(k) and 5¢(k). We kept
for €(k + 1) the value corresponding to the smallest ||6J | (k)||. This procedure
helps to prevent the oscillations that may occur with too large learning rates
and allows large steps in the regions where the potential is flat. We verified that
the time needed for the three weights determinations is compensated because
larger steps are allowed when possible. Perhaps more important, the choice
of the initial value for the learning rate becomes non crucial, as the algorithm
adjusts it automatically. Thus, we do not need to make any test before the
different runs, a fact that results in a substantial gain of computer time.

4. Simulation results

We made numerical simulations for several values of @ and N. For each N, one
teacher vector B was picked at random from a uniform distribution within the
N-dimensional centered hypercube of side 2, and P = aN training patterns, of
components S = +1, were randomly selected. The number of tests for each
pair (P, N) ranged between 1000 to 40000, and was chosen large enough to
determine the generalization error ¢, within ~ 0.1%. We performed most of
our tests on a parallel machine that allowed for 64 training sets to be processed
simultaneously.

The generalization error is represented as a function of 1/N on figure 1 (a).
For each value of o we considered values of N large enough, that second order
corrections in 1/N are negligeable. The lines correspond to linear fits, whose
extrapolations to the origin are in agreement with the theoretical prediction
for €4, valid in the limit N — oo. The finite size corrections are negative and
proportionnal to 1/N for large N. This behaviour is not very surprising as the
information carried by the training set at given « is larger the smaller N.

The variance o7 = {(¢; — (¢,))?), plotted as a function of 1/N on figure
1 (b), vanishes 1/N — 0. This result confirms that the hypothesis of self-
averaging, underlying all the theoretical calculations, is correct: the variance
of the generalization error tends to zero in the thermodynamical limit for all
the « studied.
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Figure 1: (a) Generalization error vs. 1/N for & = 6,10 and 14. Open symbols
are numerical simulation results, full symbols are the theoretical predictions.
Error bars are not visible at the scale of the figure. (b) Variance of ¢, vs. 1/N
for @ = 6,10 and 14.

The distribution of stabilities of the optimal student has been determined
from our simulation results. The results corresponding to o = 6 are plotted
on figure 2 for two values of N, together with the theoretical prediction for
N — +o0o (7). For comparison, we included on the same figure the teacher’s
distribution p;(7), which in the thermodynamic limit has the following simple

analytical expression:
9 2
pe(7) =\ —exp (~77) : (11)

The teacher’s and the student’s distributions agree far from the separating hy-
perplane. The bayesian student has a maximum of patterns at a finite distance
to the separating hyperplane, but contrary to the Maximal Stability Percep-
tron [10], there is a finite fraction of training patterns closer to the hyperplane.

5. Conclusion

In this paper we presented numerical simulations of the optimal (bayesian)
perceptron learning a linearly separable task from examples. They confirm the
theoretical predictions in the thermodynamical limit N — oco. We show that
for finite N, the mean value of the generalization performance is betier than
the theoretical predictions, which should thus be considered as a theoretical
upper bound for the average generalization error.
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Figure 2: Distributions of stabilities p(y) for « = 6.

References

[l]u M. Opper and D. Haussler, Phys. Rev. Lett., 66, 2677-2680 (1991).
(2] O. Kinouchi and N. Caticha, Phys. Rev. E, 54, R54-R57 (1996).

[3] A. Buhot and M. B. Gordon (to be published).

[4] M. B. Gordon and D. Grempel, Europhys. Lett., 20, 257-262 (1995).
[5] R. Meir and J.F. Fontanari, Phys. Rev. A, 45, 8874-8884 (1992).
[

6] M. Bouten, J. Schietse and C. Van den Broeck, Phys. Rev. E, 52, 1958-
1967 (1995).

[7] M. Griniasty and H. Gutfreund, J. Phys. A: Math. Gen., 24, 715-734
(1991).

(8] T. L. H. Watkin, Europhys. Leti., 21, (8), 871-876 (1993).
[9] B. Raffin and M. B. Gordon, Neural Computation, 7, 1206-1224 (1995).
[10] W. Krauth and M. Mézard, J. Phys. A: Math. Gen., 20, L745-L752 (1987).

156





