ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 365-371

An evolutive architecture coupled with
optimal perceptron learning for
classification

J-M. Torres Moreno, Pierre Peretto and Mirta B. Gordon.

CEA/Département de Recherche Fondamentale sur la Mati¢re Condensée
CEN-G - 17, avenue des Martyrs - 38054 Grenoble Cedex 9 - France

Abstract. We present a new incremental learning algorithm that
generates small networks with very good generalization performances. It
combines a strategy for generating internal representations with a highly
performant perceptron training algorithm, Minimerror. Results of tests on
artificial and real classification problems are reported.

I. Introduction

Learning binary classifications from examples is one of the main challenges for
neural networks. Given a learning set of examples, the aim is to design and train a
network that will correctly classify new inputs, i.e. with high generalization
performance. Although a feedforward perceptron with a single hidden layer is
sufficient to approximate a given function, the number of units needed to reach a
given accuracy is not yet known. Thus, a learning rule for networks with hidden units
should deal with the number of hidden units, the internal representations (IR) of the
input patterns, i.e. the states of the hidden units to be associated to each input of the
training set, and the values of the synaptic weights all at the same time.

Several simplifications make the problem more tractable. The simplest one consists
in freezing the number of hidden units, and to minimize the number errors. If hidden
and output units are continuous variables; the function to minimize is derivable, and
the weights are determined with a gradient descent. This is what Backpropagation (BP)
does. The IR's are a by-product of the algorithm. One of the drawbacks of BP is that
some hidden units may be working in the linear regime, and might be replaced by less
non-linear units. Pruning techniques cope with this problem, but learning has to be
reiterated.

Learning in networks with binary hidden units has to manage with the IR's. This
approach is very attractive, because once a strategy to generate the IR is proposed, it
reduces the problem to that of learning with single perceptrons (as many as hidden
and output units are needed). The strategies proposed so far for learning with a fixed

number of binary hidden unitsl2] are not guaranteed to converge to a solution.
Evolutive learning strategies are more promising, because they handle both, the
number of hidden units and the synaptic weights at the same time, to learn the
training set. Incremental procedures, that add hidden units one after the other, generate

mainly two classes of architectures : tree-like networks[3 45.67.89] or multilayered
perceptrons with each hidden layer fully connected to the preceding

one[m’ll’u’13 ’14]. We are interested in the latter, because tree-like networks seem
less robust : the failure of a single branch may disconnect a whole sub-network from
the input.

365

ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 365-371

In this paper, we present an incremental algorithm that generates a network with only
one hidden layer - we suggest to call it Monoplane - by combining the Tiling-

like/Offset strategiesl!2-14] 7]

Minimerrorls 16,171 (5 train the individual units, a learning algorithm for binary
perceptrons that finds a solution whether the training set is separable or not : it
minimizes the number of training errors if the training set is non-separable, and it

achieves optimal generalization if the training set is linearly separable[lsl. Its good
performance is crucial in order to generate small networks, believed to generalize
better than large ones. The algorithm is presented in the next section. Its
implementation, and results of tests on artificial problems are presented in §III. Its
application to a real world benchmark is presented in §IV. Section V is devoted to the
conclusions.

and a suggestion by Frean!’l. We use

II. The evolutive learning algorithm
Consider a training set of P input-output pairs {(E“,t”)}, pu=1,2,...,P. The inputs

E” =(1,E;,’1‘l Ll ,...,&‘;I) are real valued N+1 dimensional vectors, with the first

component acting as a bias. The outputs are binary 7" =+1. We want to construct a
neural network with one hidden layer connected to the N+1 input units, and one
output neuron connected to the hidden neurons. During training, the size of the hidden
layer grows until the number of training errors vanishes. After learning, the hidden
neurons h, 1<h <H, have synaptic weights wy;, 0<i<N, the wyg are biases.
The output has a bias wy and and synaptic weights wy,. When the input is pattern

E” , the states G = (1,0‘5",...,0‘}1{) of the hidden neurons, and the network’s output

Guut are

0 - . e - .
N
o =sign| Ywp&l' | for 1Sh<H
i=0

Y u M

TR 1

Oout = mgn(Y Who}h J
h=0

The states G't':' define the internal representations of the inputs, which have to be

faithful[1 11 two input states whose outputs are different should have different IR's.
As our network has only one hidden layer, these internal representations have also to
be linearly separable.

The learning algorithm has two stages. The first one is identical to the first hidden

layer construction of the Offset algorithm[12] and of the Tiling-like Learning in the

Parity Maéhine[l4]. It generates faithful IR's, such as the network's output is the
parity of the IR. However, contrary to Offset, that implements the parity with a
second hidden layer which has to be subsequently pruned, we go on adding hidden

units following a variation to the Upstart algorithm suggested by Freanm, until the
IR's become separable. The advantage of this strategy with respect to Offset is that it
avoids the second layer pruning and, in general, it ends up with networks having a

366

ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 365-371

lower number of synaptic weights. We start by connecting a first hidden neuron
(h=1) to the input units, that learns the training set. If the number of training errors
vanishes, €;(h=1)=0, the algorithm stops ; the training set is linearly separable

and the network is a perceptron. If €,(1) # 0, this unit is the first one of the hidden
layer. The algorithm proceeds as follows :

Stage 1:1f g (h)#0, a new neuron is connected to the input, h < h+1, and is
given to learn 'cg = Tﬁ_loﬁ_l, (11 <P). We go on adding hidden units until one

gives €,(h)=0. A solution exists [12, [14] for each added unit that decreases by at

least 1 the number of errors of the previous one, thus ensuring convergence of this
stage. Once the condition &;(h)=0 is met, go to stage 2.

Stage 2 : connect the output unit to the hidden units, and use the following training
set : {(6”,1:“)}. for 1Sp <P, where 6" =(1,0'il,...,0‘ﬁ) are the outputs of the

hidden units. If error-free learning is achieved, the IR's are linearly separable, and the
algorithm stops : the hidden layer has H=h units. Otherwise, we go back to stage 1

to add new hidden units, with h < h+1 and tﬁ = ‘c”o‘ﬁut, where ogut is the output

of the output neuron to pattern . Here again, this back and forth procedure
converges : a solution exists that decreases the number of errors of the output neuron
by at least 1 each time. In practice, a single return to stage 1 was enough to find a
solution in most of our simulations.

The final number of hidden units depends on the performance of the learning
algorithm used to train the individual perceptrons. Most incremental strategies use the
Pocket algorithm[S] ; it has no natural stopping condition, which is left to the

patience of the trainer. None of the proposed improvements[1 9,20] are guaranteed to
find the best solution, which endows the perceptron with the lowest generalization
error if the training set is linearly separable, and minimizes the number of errors

otherwise. Minimerror[15 16,17,18] 45 5 learning algorithm recently developed to this

end, that has been shown theoretically[16] and numerically[17] to fulfil both
M

conditions. It generates normalized weights W : Wew= Y (W i)2 =M+1 (M=N
j=0

for the hidden units, and M=H for the output unit) that minimize a continuous cost
function representing a noisy measure, at a temperature T, of the training errors

1 2 ™
E=~ ¥ |1-tanh 1 @
2,5 2T

L& e EM

Hwel .

The stability or margin of pattern 1, Y* = —=—==—, measures the distance of
! iy 8! P g J—— N+1

pattern W to the separating hyperplane, with positive sign if it is well classified,
negative otherwise. Minimization of (2) is achieved through deterministic annealing,
which is nothing else than a gradient descent combined with a slow decrease of the
temperatureT through 1/(T—-8T)=1/T+38(1/T), where 8(1/T) is the annealing
rate parameter. A full description of the implementation of Minimerror will be

presented elsewherel?1).

367

ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 365-371

III. Implementation and preliminary tests

The implementation of stages 1 and 2 of Monoplane is straightforward. There are two
kinds of adjustable parameters : those of Minimerror and the initialization of weights.
In Minimerror, the initial temperature, the asymmetry and the learning strength were

kept constant, with the values given inl16] in all our simulations. The effect of
modifying the annealing rate is discussed in IV. Initialization of weights may be
random, like in BP. However, better results are obtained with the following initial
weights : the first hidden neuron is initialized with Hebb’s rule :

- JN+1 P - N .02
wiit =y = 3 (i) ®
] u=1 i=0

where the pre-factor VN +1/ |\3'v| ensures the proper normalization. Subsequent hidden

neurons are initialized with the solution of the preceding ones. The output unit is
initialized with Hebb’s rule, calculated like in (3), but with H at the place of N and

the IR's 0"}: instead of the input patterns ﬁtl With this initialization, Monoplane is
completely deterministic.

We tested Monoplane on the exhaustive learning of the parity of N binary inputs, for
1<N <11 (for N=11 the training set has P=2048 patterns). This well known
problem confirmed that Monoplane generates the smallest and most robust network,
which has H=N and maximizes the lowest stabilities of learned patterns, on the hidden
units as well as on the output unit. . To our knowledge, no other learning algorithm
was yet reported to produce this result for the largest value of N tested here.

Minimerror was devised for binary inputs, located at the vertex of the centred hyper-
cube of side length 2. Its performance on problems where the states of input neurons
are real numbers was tested on the separation of two intertwined spirals. A very
simple pre-processing of the input data that bring the patterns back inside the hyper
cube was found to give good results. Thus, for real valued inputs, the following linear
transformation has to be applied to each component of each pattern :

139 <-—2—§iu———l
' M-m @

where M = Max{é';l} is the maximum among all the components of the training set
i
B o Jen] . s
{&i }, and m= I}Hn{éi } is the minimum.

9

I1V. Application to the classification of sonar targets.

We tested Monoplane on the classification problem of sonar targets, studied by

Gorman et al. with BP[22], Input patterns are 128 sonar returns collected from either
a metal cylinder or a cylindrically shaped rock. They are coded with 60 real numbers
in the interval [0,1]. We pre-processed the inputs with (4) to bring them back to the
binary hyper-cube. We studied both aspect-angle independent (AAI) and aspect-angle

dependent (AAD) data classiﬁcationlzz].

368

ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 365-371

Consider the AAD problem first. A subset of 104 representative patterns was selected
as training set, the remaining 104 patterns were left to test the generalization

performance[n]. The results of Monoplane with an annealing schedule for
Minimerror of 8(1/T)=0.001, are summarized in Table 1, together with BP’s
results. Because Monoplane is a deterministic algorithm there is no dispersion in our
results. Surprisingly, the generalization performance is worse with two hidden units
than with a single perceptron (i.e. with only the first hidden unit connected), a
phenomenon usually interpreted as overfitting. To understand this result, we trained

the first hidden unit with an extremely slow annealing schedule (8(1/T) = 1074).
We found that both, the training set and the testing set of this benchmark are linearly
separable, but with different hyperplanes. Thus, neither the training set nor the testing
set are representative enough of the problem. By including in the training set the 17
testing patterns-that our 2-hidden network could not classify correctly, Monoplane
(with the initial value 8(1/ T)=0.001 for Minimerror) generated a 2-hidden units
network having 100% of learning and generalization performance.

The AAI problem uses a different partition of the same patterns to create the training
and testing sets. The testing set contains 16 randomly selected patterns among the
208 available ones. The 192 remaining patterns constitute the training set. Results
corresponding to 9 different testing sets are reported on Table 2. Depending on the
learning set, Monoplane ended with 2, 3 or 4 hidden units. In every case, when
including the wrongly classified patterns of the testing set into the training set, 100%
performance on training and generalization is obtained.

These results shed light on the ubiquitous problem of overfitting. In this particular
problem, seemingly imperfect generalization may be an indication of insufficient
amount of data, rather than overfitting.

H | & (MP) | &,(BP) gg(MP) ,.Sg(BP) Table 2. AAD series.

€, =number of training errors
+ +

g g §19i6003 ig ?12:1? €g=generalization errors.

3 - |1.9+0.02 |- 12.0+0.4 | BP=results of Bp[22]

6 _ 0.6+0.01 11.120.3 MP=results with Monoplane.

H | ,(MP) | £(BP) | £,(MP)| £,(BP) Table 1. AAI _se:ries.

0 [5.5502 | 20.4%05 | 3.0503 [3.7004 | Sr=mumber of training errors

2| 0 |6.7%0.04]55502 [2.0t02 | Sggeneralization errors.

3 0 |2.3£0.01 | 3.6£0.2 | 2.0+03 | BP=results of BPI22]

4 0 2.9+0.2 MP=results with Monoplane.

6 - 0.6x0.01 2.7£0.2

IV. Conclusion

We presented a new incremental learning algorithm, Monoplane, that generates small
networks with very good generalization performances. These properties stem from the
combination of a good strategy for generating internal representations, coupled to a
highly performant perceptron training algorithm. We presented tests on artificial and
real classification problems. Monoplane proved to be a powerful tool for efficient

369

ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 365-371

learning and for data analysis. The results presented in this paper suggest several
directions for further study. Investigation of overfitting in other problems,
implementation of on line learning by including wrongly classified patterns in the
training set, extensions to overlapping and noisy patterns distributions are topics
currently in progress.

References

[1] - Mitchison, G.J. and Durbin, R.M., Biol Cybern 60 (1989) 345.

[2] Nabutovsky D, Grossman T. and Domany E, Complex Systems 4(1990) 519.

[3] Nadal, J.P., J.Phys.A (Math.Gen.) 22 (1989) 2191. ‘

[4] Sirat, J.A. and Nadal, J.P., Network 1 (1990) 423.

[5] Gallant, S.I., IEEE Transactions on Neural Networks 1 (1990) 179.

[6] Fahlman S.E. and Lebiere C., in: Advances in Neural Information Processing
Systems 2, D.S. Touretzky ed. (Morgan Kaufmann, San Mateo, CA., 1990)
p.574.

¥l Frean, M., Neural Computation 2 (1990) 198.

[8] Golea, M. and Marchand, M., Europhys. Lett. 12 (1990) 205.

9] Gray, D.L., IEEE Transactions on Neural Networks 3 (1992) 176.

[10] Rujan, P. and Marchand, M., Complex Systems 3 (1989) 229.

[111 Mézard, M. and Nadal, J.-P., J.Phys.A 22 (1989) 2191.

[12] Martinez, D. and Esteve, D., Europhys. Lett. 18 (1992) 95.

[13] Knerr, S., Personnaz, L. and Dreyfus, G., in: Neurocomputing : Algorithms,
Architectures and Applications, J.H. F. Fogelman ed. (Springer, 1990) .

[14] Biehl, M. and Opper, M., Phys. Rev. A 44 (1991) 6888.

(15 Gordon, M.B., Peretto, P. and Berchier, D., J.Phys.I France 3 (1993) 377.

[16] Gordon M.B. and Berchier D, in ESANN’93, M. Verleysen ed. (D facto,
Brussels, 1993) p.105.

[17] Raffin, B. and Gordon, M.B., Submitted (1994) .

[18] Gordon, M. and Grempel, D., Europhys. Lett. To be published (1994) .

[19] Frean, M., Neural Computation 4 (1992) .

[20] Moreno, J.M., Castillo, F. and Cabestany, J., ESANN’93 (1993) 33.

[21] Torres-Moreno, J.M. and Gordon, M.B., In preparation (1994) .

[22] Gorman, R.P. and Sejnowski, T., Neural Networks 1 (1988) 75.

370

